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Summary

This research project was aimed at investigating the applicability of a new filter design
technique invented by Dr. Beylkin at University of Colorado to develop adesign
automation tool for implementing filters in adaptive computing systems (ACS) using
FPGA devices. Angeles Design Systems provided the design automation environment
and USC/ISI provided the adaptive computing testbed for testing the filter designs.
USC/1SI also provided overall project management.

In the first year, Angeles carried out several experiments with filters designed by
Colorado to evaluate the cost of these filtersin ACS devices. USC/ISI provided the basis
for the cost calculations. Angeles used their automated optimization tools to calculate the
cost of the hardware-optimized designs. It was determined that the filters designed with
the existing Colorado techniques (Appendix A) did not reduce the cost compared to
conventional filter designs. The results of the Angeles experiments indicated that the
Colorado technique was reducing the computational cost significantly but increased the
memory cost in ACS systems. Thisis because in ACS devices, USC/ISI research
indicated that memory cost dominates.

In response to the above results, in the second year Colorado further devel oped the theory
and created the “sub-sampling” factored FIR filter design technique (Appendix B).
Experiments conducted by Angeles using their design automation environment
(DSPCanvas) indicated that this new technique yields the same computational cost
reductions as the original technique and dramatically lowered the memory costs. As an
example, a stringent filter required in radar system at MIT Lincoln Labs was used as
benchmark. It was found that the new technique developed under this program yielded a
70% overall cost reduction for the radar filter compared to conventional filter design
techniques (see results section in this report). USC/IS| researched applications and
identified the Radar filter for benchmarking.

In the third year, Colorado provided support for integration of their filter design software
with Angeles design automation environment. Angeles developed the ACS (FPGA)
design generator (in VHDL) to trandate the filter design to actual hardware
implementation. Angeles experimented with different ACS based architectures to
determine the lowest cost memory implementation. USC/ISI carried out testing of the
hardware designs on their ACS platform to validate the design automation tools.



Introduction

Filters form a substantial part of many defense signal-processing systems such as radar
receivers. Due to changing system requirements (depending on the theater of operation)
the filter designs need to be frequently changed. Manufacturing new hardware for every
new requirement is an expensive proposition and also limits the military’s agility to
change the system in the field. ACS technology developed at USC/ISl allows the same
hardware to be reprogrammed in the field for different filter functions' thus eliminating
new hardware costs and delays in deployment. ACS hardware, however, requires filter
design techniques that reduce the cost (size) of the filter computations and memory
requirements to allow implementation in ACS devices. Angeles Design Systems has
commercial DSP design tools that allow optimization of filters for target hardware.

To leverage ACS filter implementation for DoD applications USC/ISI, Colorado and
Angeles partnered on this project to develop and implement afilter design tool that
allows the resulting filter hardware to be implemented in ACS devices.

Methods, Assumptions and Procedures

Methods:
1. Sub-sampling (Appendix A)),
2. System Solve for cost analysis and hardware optimization (ref web site),
3. USC/ISI ACS platform

Assumptions:
1. Target technology is ACS devices

2. Filter designs requirements can be expressed by frequency response and SNR
specifications
3. System stability requires polynomial filters

Procedures:
1. Identified benchmark
2. Experimented with conventional technigque and proposed techniques
3. Evaluated results using actual ACS hardware parameters
4. Developed new techniques based on experimental results to achieve goa of cost
reduction, while maintaining automation of design techniques.



Results and Discussion

The benchmark radar receiver filter represents extremely stringent requirement, which
usually result in high precision computational hardware thus driving up cost.

The new techniques devel oped under this program not only provide 70% cost reduction
compared to conventional techniques but also better performance Signal to Noise Ratio
(SNR). Thisis due to reduced precision required in the proposed filter function compared
to conventional filters to achieve the same performance.

A key reason for the success of this project was the ability of USC/ISI and Angelesto
utilize real world hardware knowledge and design tools to pinpoint that source of costsin
the filter design and Colorado’ ability to develop a technique specifically minimizing
these costs while creating a fully automated design procedure.

The radar front-end filter (obtained from MIT Lincoln Labs) is used for converting real ADC
data into in-phase and quadrature radar samples in the IF stage of the receiver. Thisrequires |
and Q channd filters for conversion from IF to baseband.

The filter specs to accomplish this are given below:

eInput Signal bandwidth: 250 kHz centered at 2.5 MHz

o|F Input Sample Rate from ADC: 10 MHz sampling.

*Output baseband sample rate: 625 kHz (decimation by 8 in each filter)
*Passhand cut-off (for each filter): 125 kHz

*Stopband edge (for each filter): 312.5 kHz

*Stopband attenuation: 90 dB

The same filter was designed using 3 different algorithms, with responses and costs as shown
below. Note that the sub-sampled factored FIR filter developed on this project costs 33% of
the conventiond filter design currently used in the radar front end, while providing superior
attenuation and SNR performance. The design and implementation of this filter in ACS
devices (FPGAS) has been fully automated as described in Appendix C.



150" order conventional FIR filter frequency response



Frequency response of factored FIR filter
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FIR Filter Cost/Perfor mance:

Design Attenuatio | SNR | Coefficien | Datapath | Cost
n t Precison | Preciso
n
Optimized | -90.4471 | 91.1 | <20, 20, | <20,20> | 9608.
dB 7>
Factored FIR Cost/Performance:
Cost Attenuatio | SNR | Coefficien | Datapath | Taps
n t Precison | Preciso
n
6916.2 -99.1365 | 54.2 | FIR <40, 40>
7dB | <30, 30,
8>
Factored
fir
<40,22,5>
Sub-sampled factored FIR Cost/Performance:
Cost Attenua | SNR | Coefficient Precision | Datapath Factors
tion Precision
3154.55 -11854 | 1164 Facfir4:25,8,4 | 35,33 Taps 0 = 8
dB Taps 1 = 8
Fir: 36, 31, 8 Taps 2 = 8
Taps 3 = 8
Facfir0: 8,4, 1 Taps4=35
Facfirl: 4,2, 1
Facfir2:4,2,1




Conclusions

In conclusion, the research objectives of developing an automated filter design technique
for low-cost ACS implementation, was achieved. Colorado developed a new theory as
well as computer program. Angeles integrated the Colorado design program in to their
commercia design environment and developed cost calculation tools and hardware
generation tools specifically for ACS implementation. USC/ISI provided the ACS
expertise and knowledge base and carried out the final demonstration of the project.

A key impact of this project was the combination of theory (Colorado), practical design
tools (Angeles) and actual hardware prototyping (1Sl). Based on the tools and hardware
feedback, the original theory was modified to develop a completely new type of filter
structure, which is well suited for ACS implementation and provides substantial
advantages over conventional filter structures.

In the above project the filter theory was advanced to ensure reduction of the memory
requirements in the ACS device. A future project could aim at further advancing the filter
theory so that the coefficients are optimized to be closer to values that reduce the ACS
hardware requirements.

Other technigues to reduce filter complexity generically reduce the total computational
needs. This may not however reduce actual hardware as established in the above project.
The uniqueness of this project lies in the fact that the actual factors affecting ACS
hardware complexity were first identified and then the filter theory was developed to
minimize these factors. This has led to the most powerful ACS filter design approach.

References
See gppendices A, B, and C.



Appendix A

A linear system and explicit solutions
for approximate linear phase filters
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[ Introduction

Filters with linear phuse response are of ansiderable importance for avariety of applications, Unfor-
tnately, othver d esirable properties of the filers cwld beincompatible withithe linear phase property.
For ecam. ple; except for the Haar filber: there arenoe R perfect recenstnection fillers with s linear
please [ 11, Z]. even Buough ik is still possible be desen ecamples if one asks for nearly linear phase (8]
Thegse filbers are named coiflets [3] and.. as shown in (8], their construction is greatly smplified by an
appropriate linesr duangeof vadables involyving thePC group dday A smilar approads is follewed
here, and the dgayis always view as an ek parameter bk can abke any real value,

It is showny here Heat approcimate lner phase (ALPY around e o gin can be drarmcterized by
simple. lingar conditions on the cefficients of the filber In fack tee resolt follews from. an absbract
property of fundions and can beapplied to s vaiety of flles provided they have real coefficients

Thee AL system. is explicitly solved for digital FIR fillers and we obtain ecplict expressions for
masd mally fat deday flbers of any length and any DC goup dday: These fillers ae particular cases
of lypergeometric hnctions and can be associated with & variety of special fundions. Thus, recwr-
rences, location of serpes, integral representations, and many other properties are available,

[ agreement with theoretical resulks, these optimal ALF fliers coindde with those devived in
phver construdions, For a range of delay valwes, tese optimal selutions can be obtained by appro-
priate ransformations of Abele's maximally fat distributed linear phase fllers (Se (1} [4] or [10,
Section 6.5} They alsy can be directly obtained from Thiren's al-pole digal filers with macimally
flat dday[1Z] by reversing the dday sign and muliplying by an appropriate constant, Hovever, the
proef presented here is more general and avers all possible valwes of the deay even those values
leding to @ sngular system., The solutions of these singular svstems ae also Aol described, These
selutions indude smmetric pebmemials that is. flkers with ecact linear phase. In this ways exact
lingar phase is described a5 a particular case of the ALF system. that only arises for inkeger or half-
inkeger choioes of the dean bt is neverthaess natwraly integrated inke the general rameworkc of
ALP filbers,

Wikl respect to simulaneous amplitude and phase approcimation, it will be shown that i dee
order of amplitude approcimation is ab most twice the ALP order ten: the amplitwde spprodm.ation
condilions are also linear conditions on the meffidents of the ke Usng this reswlt one can easily
derive the well knewn optimal FIR approcimation of an ideal fractional delay fller (Ses [7] and
references therein.) These optimal fliers are alse hypergepmetric unclions

For darity: we present first & brief summary of a program. to approacts other lnesr phase designs.,




IR filters Many [IR descriptions can be pbtained using tose for the AR case. For example, for
digital fillers H = PO where Pand @ are FIR filters, any order of linear phase approsdm akion
for Hiz)is equivalent to the sume order for PzpQ(z"".

Analog filkers Distributed fillers with any order of AL can be obtained by dre standard bilinear
branesformation applied b o digka fller with te same order of approsdmation. Sinoe AR G-
ters are ansformed inte [IR filters the distribuwied case can be obtaned once we kow tee
appropriate solutions for bothy AR and [IR digital filters. The optimal lumped AR flters ae
Bessel pobmoemials, They qn be wsed o obtain other FUR. or [ER filkers,

Meneptimal filters A il with any order of lingr phase apprecimation can be expressed as linear
combinations of optimal ALF flbers, The constants in the lness combination are free parame-
bers that can be wsed to impose additional properties,

Simulanesus Amplitvde and Phase Approsimation The pptimal FIR flkers approcimating anideal
fractional delay can be used o describe other simul taneows gpprodmations where the order of
approvcmation of the amplibude and phase differ.

Wi nonw povink ek seme of the sdyvantames of the progrem. presented.

® The linear formaulation and the recopnition of common propertes for all ALP flbers vields a
genveral framework for thestudy of lneur phase properties.

# Optimal ALF filbers are of inberest in thele owm dght buk thedr properties are also important for
the desigm of all otver ALF fillers, Reciprocully: known consbnections can be regast in bermes of
these filbers and previows results can be used| to further und'erstand the propertiesand stnucture

of the optimal cases,

* The previows poinks als apply te smulanesus amplibude and phase approdmation provided
that theorder of amplibede approcimation is at most twice the order of phase approcimation.

[ thiss paper we focws on deriving e properties common b sl ALP flkers and iks consequendaces for
digital FIR filkers, Other filler designs will be discussed dsevwlvere

The summary of the paper is & follows, The condilions for ALF and for simultaneous ampli-
bede and phase approdmation: ae presented in Section [L I Seclion 0 these general. resulis ae
specializpd o digital filers and necesary conditions for the flker magnibide to be less Huan unity
are derived in berms of the deay, The linear system. for ALFP around an arbitrary fequency is also
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pres=nted. InSection [V all ALP AR digital filters are described as lingar combinations of macim.ally
flat digdary fellers For which ecplicit expressions are derived. nteger or halfinteger choices of the de-
lay lead boe i repperesentation: yvolyving madmal and symmetric polynomials, Two different ecam ples
are presented in Section V. Simultaneows amplitude and please spprocdmation fillers are desaribed
a5 lingar combinations of explicit optimal fillers which spprecimate an ideal fractional delay: In tee

seeCind example we discuwss some properiies of macimally fat delay fliers
Mok o

D denotes the derivative operatorand +D thec-pa‘i:*.‘-rﬁ';‘._:—.- For any operator T, iks 2-th iteration is
denoted T where TV is the identiby operator, We assume enowgh derivatives for all functions under
considerakion.

Theset of real numbers is denoted by R and the set of inkegers by Z. Ry [X] is tveset of polynoem.i-
als with real coefficients and degree(degl less or equal than N, Polynomials always ocour in posiive
prewers of the variable, We will use the szt of 8 of armmeeinc pobmomials

R = [P € Ry{XT: 2P = o)
*_DH-'I_-{FE*_N:d-%I:P;I-N- andl Fl:l;l-]}_

For example, =¥ is symmetric becawse belongs o R even tough it does not belong to % or oy

Fi, bz ) is the Gauss hypergeemetric saies of wpper pammeters @ and b, lower parameter ¢
and argument z.,

By filber we always imply its s4ransform. We only consider real lovw-pass fillers and ths & AR
filter is a pobmomial 5 fe2*, with real coefficients g} and Epfy = 1.

Thee factorial powers and generalized binomial meffidents ae defined for any complex 2 and any
nonLembive inkeger 2 as 28 =1,

=alz— Dz = -1,

and (5] = z2/r!.

Forfz > 0 we use the notation [2: b el = {a + ke k€ Z and 0 <k < 52, We use parenthesis
instend of bradets o eclude endpoints.

Thee symbol & s defined as G = 1 if e = 2, and & = 0 otherwise. T denotes the complec
coniugabe of the complex number z,

11




[I Conditions for approximate linear phase and for simultaneous ampli-
tude and phase approximation

Wi first present an informal approachs o the conditions for ALF, Wrike,

P B T B i

]
wherethe real funclions 2 and p are tee amplifude and phase ressponseof the filer H and yis the DO
srowp deans
For a function 7, the Taylor ecpansion of fe7)is
Dl
e - B B e,
=

Thhus, for f{x) = x=TH{x) ot x = ¢,

e HE G - E.w“”l
N I.-."."“E-E W+ E Maya[— YT, (2
where the real numbes
M, = I:—,};l:‘r . (3

are the shifted moments of the sequence [},

From (1) for H to be ALF we expect the function e~ 5H(e%) to be dose o & real function. For
its imaginary part ke vanish up b s certain order, Eq. (Z) indicates that some edd moments showld
vanistt, We will show that this is indeed the case and that MGy = 0 for 0 < < N is acheally
equivalent o D= ey — EEm =0 for 0 < g < N,

[f the filler is ALF the first berm, of e sum. in (21 sheuld somehow approcimate the amplitude
respons. This inbuition is agancorrect and. as it is shvowm in Corpllary 3 fat amplibd earound &z
is equivalent with vanishing evern moments.

Since we wowld like o apply owr resulis o real flbers H wivess frequency responses can takoe e
form. Hi®), HJEY, or Hijkan £), we consider complex valwed functions {50 such thak f—£) = FIEL
Theat is we ask deereal and imaginary pars of F o have evenand odd srmmetry, Wikh telow-pass
condition fi0) = 1, we can write fif) = aEe™ | where the appiitte 2051 is an even real function
aned the plase p(5) is an odd resl enction.

O first result is simple o prove buk it has far resching consequences,
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Theprem 1 Let fE) e @ fenction e fakes comeplens eliees, el siede fla Fl—E) = FUEN a0 = 1,
Cosiler s represeriziion i @ reigiboriond of £ =0,

Fier=a g™, (4

e @ o even aned e ol fercime, For e reef wender ang S el miggers n, 0= < N e oy

aralitiones are et

DAl = ey, @l (5
D e T fLEim = 0. (&
Consicently.
Pt =y +alw™) & w0, 7
Proof Let FE) =~ TEFE From ()
W[FLEM =InfCEm+ ApLEr— 6N (5

Usingr that a(£)is an even functon.,
D Kl P00 = JOR Y ) — vEx 0,
Thee result follows from. the lemma in Appendix A becawse ln'[FI0 & 0 |

For the magnibideof fin (4 to be fat around =, we need dee derivatives of the function 2 to
vanish at zero, When f las ALP. the nesct theprem. implies that simultaneus phase and amplitude
approvimakion is equivalent to vanishing even dervatives of e TS ff at £ = 0

Thepram Z Lt fo, el pas iz L amd N and M ey postie ifoprs,

PP DBl = iy for 0 << N, fen
Dl = DR (e~ TEAENm for 0<r SN, s
2. I D (e T FLEN0) = yhan for 0% w < M, ther
D™ TEFEN = DPald+ [D(p(E) - AN for 0 SR < ZM. (1o

Proof Writeal£) = FIERT 5, where FIE = e~ TEE) and, becauss of the condition on the phase p,

Gig) = 7 M,

13




for spome funchon e,
We have DMGI = &y for 0 k< 2N, and thus the first part follows becawss for 0 7 < N,

D]l a1 Dﬁl— Dﬁl
Zn! (= .Ir‘“ (Ze —k) l:m [ Glm T Fimh.
For the second part, write M = IN +§ where £ s 0or 1, By Theerem. 1,
D pl) =gy for 0< R<N,

andl e previows park implies D22 = Fg for 0<p < N or D% = G for 0< e < M, because
@ is s evers funcion,
W obtain the reswlt taking derivatives in (§) and appbring the follovwing consequence of (Z4) to

gl =y and gl = Flapor wlx) = alx,
FOFedl = Fy fir 0< k< M, then D' goelal= D ela) Dylielan for 02 r < IM. ]
[II Conditions for digital filters
Let (£} = Hig'Sabe the frequency response of a digital filter H, Wehave,
Bt e = Do homn = a6, (1

where M, are themoments defined in (31, We now summarize the rdationship bebween these shi fted
moments and the derivatives at s of te funcions 2 and p,

Corpllary 3 Lt H bea firdion with Leeres expaesor o tee weid cinde, Hiz) = Tz inzt, where {inc}
are reel, H{1) =1, el Hig' )= o0 wivere 2 et pare reel fendtiones, 2 cvee and poodd

(Phased For 0 << NV e follmeieg aoditfores ane apeivalmer.
Moy =0 amt
DF Ul = g,
(Ampliteded [P, = 0for 0< e < N e
WE‘J}I My for O <N,
(Higherdervathest [F M, = fafor 1< < M e

7ot = Zamy [ ime - voum pr 0<n <2, (12

14




The value of the delay 7 affects the overall response of the flker IF Hiz) = T inz® with H(1p = 1,
the delay v equals £ k.. From [8 Proposition 321, we obtain

Froposition &
Fomag|He <1 e 0S¥ SN, (131

Thils result is not evident because the coefficlents iy are not necessarily positive and then ¢ does
nirt nesed! b b s cenker of mass, The reciprocal of (131 is not tnue as can be seen by choosing any
srmmetric polmomial with magnitude respensenot bounded by wnity,

[f the cenber of te passband is sk a frequency ¢ € (0 7), & smple generalizkion of Theorem 1
lemds to thee following system. for ALP around o,

Yiek—* ¥ =0 for D€ <N
i
For real coeffidents {a | we have the ZN equations.

e nfk — v csla)= 0
L Inlk — PV sinfog) =0
where < < .

[V Description of all approximate linear phase FIR digital filters
For renl - and nonnegative inbegers £ and I let

LI = {P e Ry[X]: kPP TP =0 for 0<n<t}
Lify={Pe Ll degPy=N and P(li=1}.

When = N we drop thesupersaipt N asin ‘E'E.;?.. = Ll
A filber Hip -E-E.,f]_ has AL of order f, Wee willsee that theorder { qannot be grester than Y ecoept
if H has evac linear phase. [n thak case v necessarily belongs to [0 M 5L For  outside [0 M ; 5]

Hvere is only one polynemial in .E."':I.,'.]_.
Thepramn 5 Lot v a el mieneher et N @ poeregetioe Getagen Thee
o Fore:i:h
Livp =\ =™y F ov=E with 0K SN

L] Fordn:dl
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witeTE

LT }

Lz = # y G”’) (2':\:: i”’);*.

Frertiernmne fre st of polynonsials of degree N anf aaod Neeer plaese aiecile wilh the st
U o
BEESH
Proof See Appendic C.
I order to describe the set L770 , we first oblain all A € L7 and then ask for the normallzkion
A1) = 1. For most v, L7 bums ouk b be o subspace of %, [X] of dimension N 41 — £, buk its
description is different depending onowhether v lies inside or outside the set [0; N ,"].

Corllary & Let V2 ropregeiive ffegeramt v @ real mieneher oetsife [0 N !"]. Thenfar0< <N {L] H'-r
e st of L7 il far £ = 0, L1 = [0}

Proof Let 00 < N, That tee dimension of ":'.11': is N+ 1 — ¢ can be obtained fom te proof of
Theorem. 5. Since (L]} are N+ 1 — { polynomials of different degress in L] they are a basis for
Huak space.

When > N, assume A #0in L]1¥ and let M < N be the degree of A. Clearly L] C LT and then
Afzy = ALT(z) for some constant A, But degl] = ¢ > Mand thus 4 = 0, & conbradidion. [F follows
that LTF = {0}, [

Wi still need 1o consider the case when v belongs to [0 30 Hor simply v e [0 £ 1 4] because
(30 with g = —1implies

Ae LF = Az e LT (14}
I the mect corollany: we show that when £ = N — 1 — 9, -E-Il‘-’ equals Kz, . Clserve that [ can be
arbitrarily Large because this case comesponds to et linear phase, Whent < N — 1— 3, L7 equals
thee divect sum. of Kz and the subspaces ;1+LL.;I—'[—-| or 2T+ I';é;ﬂ depending on whether 7 is an
intemeror a half integer,

Corpllary 7 Let v e [0 2 5] Them,

Y Rmoz g F yeD: ¥
T4 - _
!R_z]-fi.:'l+!£.l\1_ﬂ__l Foyerk: 4
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The dineemesion of LT i

N+l—t FEsN—1—w,

dmLlF =9 y41  FrEN-l-7 amd ye[O: ¥,

=

v+ 3 FrenN—1—v md velk: 510

Proof Let € [0: % : 1] Clearty Rz, C LT, With the anvention & = 3 if yis a half integer and
F = 1 if v is an inkegen we have
z! H‘Eﬁf;—'l = 4":=
becawse (x DF =TT AR = Dor gl 0 < p << fand all A € Iﬁfﬁ_r
Also.if A€ Rz ML

Ay =AY and Af)=2TTBZ)

for some pobymomial B, Therefore Bz~ = 2 Bz and then ¥ = 0 and consequenty A = {1,
Weclaim. that for any A4 € L7 there exist B € g and P g L;f;_.l sl that A = R+ PoGven A
we choose K o makdw thee first 4 § coefficients of A and define P of degres ab most IV — & — 7 sud
that A — K = TP, Because of the conditions on A and &, P& Ll;ﬂ_.l.
For the dimensions note that £2°4 = [0}, if £ = N —F — 7, and that dim Kz, = 7+ f. [

YV Examples

Thee follewing ecamples llustrabe the previeuws descriphions. We will wse some resolts on by pergen-
metric functions and Stiding numbers [5]

V.1 Simulaneous amplitude and phase approximation of an ideal respense

We use Corollary 3 bo comstruct flbers with flat amplitude and fat growp delay around zem,
Observe that for any funckion A, the following fowr conditions, valid for all & 0 B N, ae
equivalent:

DT TALD) = o, 1=
oAy = 9% (&)
o T
2 - (7). i
DT TALELY = F, [1g
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Witk (17, the macim.ally flat sohution can be obtained as

M
AL-IL:!-E G’)I::— 1. (19

For otver method's o derive these splutions see [7, Page40] and references therein, The polymomials
AT approcimate theideal fractional delay flker
=% G)l::— 1,
(=]
The frequency responss of 27 has “opimal” fat amplitude and fak growp delay aownd) &=,
Tor see= whdch vishies of Hee dilay lead to exadt Unear phase, use (151 o obtain

A T = A,

andl then either 7= & or v belongs o [0 W 1] and A%(Z) = =7, The case 7 = ¥ orresponds toa
particular case of Hermmann's linear phasemacimal flat amplibede flters [G]
The pliase and amplibude response of A are rdated o e moments of Hve meffidents by

10 )
EI‘E!':T”’M“ — X = (=1

%ecm (-G,
wherel = e < N.

In: conclusion, tee first NV dedvatives at £ = 0 pf bothea(Sand pE)— 8 do vanish, and the nest
N derivatives can be compubed in berms of higher moments of the coefficients of A7,

We now @nsider the problem. of obtaining a FIR filler H, Hie%) = g O 0 with different flat-
ness parameers Ny and Ny (N, £ ZNE

D ipi =y for D€ <Ny, and
DR = f,y for 0 R < N,

According to Corpllary 3. tee problem . is equivalent bo

M =0 for 0< <N, and
MY = fy for 0<n < N
Wiite
[N
Hizi= L Al

N A

18




where Ay are constants o be debermined. The properties of A vield,

MY =0 for 0 < min Np, Na},

aned we obtain M7 = | by setting ¥ A = 1. The additional constrains on j, depend on higher mo-

menks of A7 and can be expressed as.
IFE N, = N-,I'

ML - t M:""-f-::; for Np< < N
il
If N-,I' > Ny

M .
M= X A

oy FOr Mo Z i Ny
k=,

T compute higher momenks we can wse the expansion of A ] around z= 0,

Lo L PR N D
Ada = Frale) =~

_T_]_N__.__
e e

where Fla, bz 2) is the hypergeometric series defined in the inkroduction.
Theem, if L is & nonnegakive inkeger

[a
(P TAT gy =~ SR (Y E) st
=l

where 5 are the Stiding numbers of the second kind,

(Zh

(2L

(=

The LHS of Equ (ZZ)vanishes for all i [0 N 1 1] becawse those choices of v lead o exud: lnear
please and therefore all odd moments of AT, should vanish, Different chuoices of 7 will signi ficantly
impact on e valwes of higher moments of A]; and consequenty on the vahwes of higher derivatives

of its amplitud'e and phase.

I Figure 1 we plotted the frequency response charaderistics for AJ with o = 3.1 and N = &,
Becawcse of (131 tee value of v was chosen inthe inberval [0, #]. For these filbers both the amplitude
aned the groups delay are flat around . For clarily: the valuwes of e group delay in dee passhand

harve been shifted by =ero,
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V.2 FIR filters with maximally flat group delay

For each v outside [0; N 3, the polymomials L], defived in Theorem 5 have macimally flat group
dielay within Ry[ X1 For v in [0 & : 31, there are infinitely many optimal ALF solutions, including
symmetric polyomials Leading to edck linear phase,
As poinked owt in[12] the pobymomials L) are related to hy-pergeomelric and Legendrre func-
Hons, [ o nokakion, [1‘1'—_21]
Li(=r= —[;:.h—'FE—ZT; —N:N+1—Zyzp (Z3
Mtz thee advanbage of our formulation over e one by Thiran, By simply considering a different
norm.akiztion, L0 = 1 as oppose to L (0= 1, LT(z)becomes also & polyniomial in the variable .
Tir illustrate this advantage. we now show how o derive tee value of L ab the Nyquist frequency-

Wedaim

T 3 N -1
L?y-':—li'"’ﬁhm':z—?}":z—’:-'}'"-': 75— —Th
First note theak when v belongs to { 5, 3, -, 258}, LLiz)is a srmmebric pobmomial of degree 2y and
Huer its value at — 1 is =ero, Thus,

1 3 IN -1
L =10 el =75 — 70— — 7

for somee anskant oy, Evaleaking the previews equation at ¢ =0,
—

4 .
1 -f,ﬁ-ﬁz"‘ WILE (2N — 1

Wi bk bl value of oy .

Smilary bo the case of simultanerus approsdmation. we can wse liner combinations of the poly-
nomigs L[z} bo penerabe filkers with: any order of ALF but satisfyving additional properties,

I Figure Z we ploted the frequency response charackeristics for L with v = 3.1 and N = & The
amplibede response is not lak around zero but its goup dday is deser o constant wiven com pared
wikh the delay of AL
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3.1 0.00445
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2 2
Figure 1; Frequency characteristics of optimal filber AT, with y =31 and N = &,
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0.8 1z.5 |
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0.6 E
7.5
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N g

H
H

(5]

Fgure & Frequency charscreristics of mandmally flak delay filber L, with =31 and N = &,
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¥I Conclusijon

A vew approach bo tee thepry and design of approcimate linear phuse fllers has been presented., [t
is based on recopmisAng the edistence of & linsar fomulstion for phase appredmation as well as for
simulianeeus amplitude and phase approcimation.

This charcteristion provides linesr condifions on the il oeffidents whether the Low-pass
filber is FIR,. [IR (rational or non-rational). analeg or digital, [Ealso allows for arbifrary real values of
the PC group delag.

I this paper we examined some onsequences of dis charmderization for FIR digital flkers, The
examples presented intend o (Hustrate the advantsges of this formulation and alse provide te ec-
plict building blecks for other approdm.ate ineur phase designs

AFFENDICES

A Aresult on functions with vanishing even derivatives

Thee derivative of & composikion can be computed via

D e gz = E’. PR ez, (k)
where
' i &
Pzl = % I', ?—dlcw B i—,mw- [z
-

Lemmia 8 Assnn o (o ey roel rieneber e ©anad i fo e fe notines sech Cat OF (elael 75 0, The flluring
coalitipnes are epeivelmt fralf e, 0 < < N,

Dl = 0, il
D o e = O,
Proof Let i; = ‘-;IEEP-'I' and AWM iy =« o= fgy_p = O With (250, for 0< g < N, @l lerms in
PP Yy contain and index i swch that j; is odd and j, < 2N —1.
For the reciprol. tvecase N = Lis dear I the statement is true for 2 < N let = N. Then
g = e = fgmpe_p = and
) i R
0= D agmy = T PR @D e,
Ka]l

In: the sum. e omlky non-=ere term. comespend's b E = L Hence ez = Obecawse for all g, P = D™,
n
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B Some properties of Vandermonde matrices
Let I be mset of i different comples numbers, I = {91, 71; ... Ta—y} and denote,

P [t and @ +b= {eyw+bay+i... evm_y+ 5}

for constants @ and b, For 0 < k < w, let G (x) = Li~0 e v be the unique polynomial of at most
degres iz — 1 swch tat
Chiml=fg for 0Z)<m

Let V7 bethe 2 by i Vandermonde matrix of entries 'r"i - ’)"' Since I consists of @ different numbers,
V¥ has an inverse matri (V" whioss rows are the coefficients of O,

VOt = (250

It can be easily verified tuat for constants 2 and b,

e e — i )
and. if ['® hass emcactly n elements.
2 O] =
= 2y - .k i i pre]
||.|||:"'| 1 q.,h I:—’:l'\;l l: 1
For D= {01, g — 1} wesimply wrike C = C, . We have

= ()T - o ()
C Proof of Theorem 5
For a fundion f and & real number o
(oD ) = (e ]
When @ = —1and flx) = AL3) € L]\ we have
D (T AL — XA L =0

for allk, 0= k< 2, Equivalently, DFLAG— 2T AL VI = O, forall k0 < k< ZV, When v belongs
b [0z Mz L Az — 2T Az Y is a polyniomial of degree ak most 2N, Thus

Afz)=2TAET (3lp
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Since A has degree N, we have 0 £ 2y — N < N and then Lf, = 0 forall € [0: & 2 2. When
- "‘—? for 0 < K< N, (31) implies Alz) = z%By_ ) for some By_y € R.pe_i} Rexciprocaly, a
pelynomial of degree N and ecact linear phase satisfies (31) for integer Iy and 0 £ Zy— N < V. The
last part of the theprem. is proved.

Lt - bz oustsice of [0 W5 M and {2}, be the cosfficients of A in ‘E'[1.~1'|-' Eq. (5 is equivalent bo
the folloving Vandermondesystem

=1
E By = AT for Dsps -1 (3Z)
]

where by, = :m W= b —yy ad A= N — .
Our assum ption on o vields 7 5 5 ik £k, Thus, tereis onlby one solution {ie} of (320 that can
be compubed using Equations (26028, IFT = [}, foralk, 0< k< N,

- E e - - Sy

=] Ol sl—med
Coaly + AN sy — A _ G NI sl 2y —
EnalZy =R Cnaldy =K

To evahuate Cy o we wse (200 [ follows thak Co (1= (7 |(—10"""*and
CralBy—N1 __[Zy— NP2y —2h)
CoelZy—R) Zy— Ry - N R

EN-1-2p
-2k

berase xL = (—1r — 1 — x~
Wriking basdhc by inu bermes of @y, for 05 k< N,

LI:-N- -"T;I—f— Fa N =2y
wo (e e - B () (W F) o
Mok that (231 is alse valid for k= & and that
& ox 1 xty
E(.\r—k)(k)'( N )
for all x, v [5, Eq 522} Thus. to obtain £, 2 = 1 we chosseay = (37]/30]. m
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Appendix B

Technical Report
Generalized Variable Precision Filters

for Adaptive Computing Applications®

Theoretical background for the implementation

of factored FIR approximation of IIR filters

Gregory Beylkin and Lucas Monzon
June 6, 1999. Revised October 15, 1999

Introduction

A great variety of digital filters can be readily designed as Infinite Impulse Response (IIR) filters.
These IIR filters are typically implemented via recursive algorithms or by approximations using Finite
Impulse Response (FIR) filters. In the latter case, we are interested in approximating the frequency
response function of the IIR filter, arational function, by the frequency response function of an FIR filter, a
polynomial function. One standard approach is to find the FIR filter by some optimization over fixed
degree polynomials.

In our approach (see[1]), the degree of the polynomial approximation is not fixed. Instead, an
efficient and accurate implementation is achieved by representing the approximating
solution as a cascade of very simple FIR filters. The degree of the approximating
polynomial could be high to obtain the precision sought although the cascade
representation induces arelatively small number of operations. The number of factorsin
the cascade depends on the accuracy sought and is not very large. Higher accuracy can
be obtained by adding extrafactorsto the representation. Thus, depending on the desired
precision on the filter output, one can uniquely specify the number of factorsin the
cascade. Hardware efficiency come from the fact that only the minimum required factors
are computed.

We note that if this technique is applied to IR Quadrature Mirror Filters, we obtain a FIR filter
that satisfies the quadrature mirror condition with any desir'ed accuracy.

L et us now describe the FIR approximation.

Plz
Givenany IIR filter H (Z) = % , Where P and Q are polynomials, the FIR approximation F(z)
Z

can be written as

F(z)=
where each F(K) (z) isapolynomial. In particular,

Fo)(2)=P(z)Q(- 2)

and, for k > 0, the degree of F (k) (2) is at most the degree of Q(2).

Jf Fulz*) )

k=0

! DARPA grant F30602-98-1-0154
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Implementation reducing memory requirements
Even though each factor Fy(z) in (1) isitself a cascade of 3-tap FIR filters, there are large delays

in the factors F(k)(z2k ) which significantly increases the cost of memory. Nevertheless, if the output of

applying the filter F(z) is bandlimited, we can use a subsampled version of F(z) which drastically reduces

the memory cost.

Subsampling design
Let X(2) be the z-transform of asequence {x}, i.e.
o]
X(z)=§ x.2“ @
ki z

Let us denote by X, X1 the polyphase components of X(z),

Xo(2) = & 2" €)
k
o (4)
Xl(z) = a X2k+1Zk \ s
k

The operator 2? stands for subsampling by two, that is, it does retain only the even entries of the
sequence;

2?2:{x3? { xx }.

We want to apply a filter A(z%) to asignal X(z) and then subsample the result. Let us call Y(Z) the
result of these two operations:

Y(2) = 22(A(D)X(2)).

We note that it is possible to reverse the order of the operations. Namely, we can first subsample
the signal and then apply the filter A(2),

22AAD)X(@)=A@)2? X(2), (5)
where the order of operationsisindicated by parenthesis.

We now show how this observation is applicable to FIR cascades.

Implementation of subsampled factored FIR approximation

If the output Y(2), Y(2) = F(2)X(2) is band-limited then, it can be subsampled. To illustrate the
situation suppose that Y is subsampled by afactor of eight and that the filter F consists of five factors, that
isn=4inequation (1).

We can compute Y , the subsampled version of Y, using the discussion above. Each step of

subsampling changes the application of afilter F(k)(zzk ) to application of F (zz“ )
In this example, we obtain (operations are applied from left to right)
V(z)=2" 2727 Ry(2° Ry (2 )R 2 R (2 Fi@X(2) (©)
= Fy(2)Fy(2)27 Fiy(2l2™ Fy(227 Ry (2% (2) @

Clearly, there is a substantial improvement in using (7) instead of (6) for the computation of Y~ .
After applying F(o) , at each stage the result is subsampled by afactor of two with the corresponding savings

27



in memory. The memory requirement is dictated by the power of z in the argument of F and that power is
reduced in all factors.

IFY is the answer we are seeking, the computations can be stopped at this stage. If instead we
areinterested in Y , we can first compute V and then upsampleit to obtain Y.

We now discuss further improvements.
Faster implementation of some factors

By construction, the higher the value of k, the smaller the length of Fy)(z) and aso the smaller the
absolute value of some of its coefficients. This indicates that an additional saving can be achieved if we
expand these factors Fy) to obtain their coefficients rather than to keep them in a factored form. For those
factors we discard all coefficients below the target accuracy. This direct implementation is faster than
applying them as a cascade.

Other possible subsampling

The procedure described above is not limited to the particular way in which subsampling is
achieved in (7). Any linear combination of the polyphase components could be used. Specifically, with
the notation of (3) and (4), any operator of the form

X(2)® R(z)X,(2)+5(z)x,(2) ®)

where R and S are any function, can be used instead of 2?. For example, if we use the Haar filter

1+

V4
to decompose a signa into its low and high components, the low component corresponds to

choosing R(2) = S(z) =1/2in (8).

[1] G. BEYLKIN, On factored FIR approximation of IIR filters, Applied and Computational Harmonic
Analysis, 2, pp. 293-298, 1995.
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Appendix C

Filter Design Tool and Architecture

1. Design Methodology

The design process (fig. 1) starts with a filter specification. The filter specification depends on the
application and typically includes a frequency response characteristic and desired windowing method.
The optimization process is based on DSPCanvas. The optimization constraints are the SNR (signal to
guantization noise), the passband ripple, and the stop band attenuation. The target technology
determines the hardware cost to implement the filter. The filter is then optimized for finite precision
arithmetic, using cost functions specifically geared towards optimizing for the target technology. A
VHDL generator is available to generate the filter automatically using the optimized finite precision
results. A seamless flow is available to put the filter on hardware.

Filter
Specifications

Ref IR Filter
coefficients

FIR Filter
coefficients

Factored
Filter Program

VHDL
Simulation

DSP Canvas
VHDL generation

ACS Cost
function

DSP Canvas

Factored _ X - —
FIR Simulation Finite-precision
“C” Model Optimization

VHDL
Synthesis

Timing analysis
and verification

bitstream

HARDWARE

Figure 1 Design Flow

2. FIR Filter Design

The relationship between the FIR filter's input sequence x(n) and its output y(n) is

P4

-1

- )

Qo

y(n)=

~
1
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with N representing the number of coefficients in the fiter. A structure directly derived from this
relationship is shown in Figure where the in-line triangles represent a multiplication by a coefficient h..
Choosing these coefficient values is accomplished through standard filter design techniques.

X( n) 7-1 7-1 7-1

(+) + y(n)

Figure 2 FIR Filter

There are several ways of designing and implementing a FIR filter in DSP Canvas. One convenient
method is to use the Matlab engine interface via a Matlab model in a DSP Canvas schematic. Using
this model, one can specify a desired piecewise linear frequency response, type of filter, and the
number of filter coefficients, as illustrated in Figure . Alternatively, a filter may be designed outside of
DSP Canvas, and DSP Canvas simply loads a vector of coefficients from a data file into a standard FIR
filter model.

PARKIVOELTA " THmd OFFFT_LENETH

NATLAB
’7 - ] ; FINITE_FIR

Ll | | Parametear Editing Dialog ($11208)

Parameter Default Yalue
Filter_Type i I
Freq Spec. O |a(D,D.2,'D'.3,D.5) 4|
Magnitude O Ia(.l,l,El,'D) |
Yeight o | o
Cirder 10 ISU o
string:Type of filter: equiripple ("), "hilbert”, or "diff".

Figure 3 Filter specification for Matlab

3. Optimization Strategy

The goal of the optimization process is to find the lowest cost solution that meets the fiter design
constraints. The three components of the filter optimization system are:

Filter and architecture parameters
Filter design constraints

Cost function

In general, the filter parameters (such as coefficient quantization width) determine the architectural
parameters (such as datapath precision), which results in a certain implementation cost. As the filter
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parameters are varied, the filter constraints must be checked to ensure that the filter satisfies its design
specification.

3.1 FIR Filter Parameters

There are four classes of parameters for FIR filters:
Input encoding

Coefficient encoding

Accumulator encoding

Output Encoding

For the multiply-accumulate operations in Figure , consider a 2's complement. In DSP Canvas, the
precision of 2's complement numbers is represented as the pair <w,d>, where:

<w> is the total number of bits
d defines the location of binary point at <d> bits to the left of the LSB i.e. the LSB has a value

2—d

Using this definition, the smallest non-zero value in magnitude is 2° d , the greatest positive value is
(ZW'l - 1)>Q' 9 and the greatest negative value is - 2" *1:279.

Assume that the coefficients are encoded using canonical signed digit (CSD), where each digit
may be a 1, 0, or —1. For example, the 2's complement representation of decimal 7 is 0111, whereas

the CSD representation is 100 1 (-1 is represented by the symbol Z_L). Note that a CSD-encoded
number evaluates to the same value as a 2's complement encoded number.

In DSP Canvas, CSD numbers are represented as <w,d,nz>. The third parameter nz
represents the maximum number of non-zero digits allotted for a number, and its range is limited to

w _ o W
OE£nzE E . Note that there is some degree of quantization if Nz < E .

Thus, in total there are 5 parameters that can be varied while satisfying the filter specifications:
Coefficient encoding: w, d, and nz, i.e. coef fi ci ent <w, d, nz>
Accumulator encoding: w and d, i.e. accunul at or <w, d>

The dialog box in Figure illustrates the entry of these five parameters in DSPCanvas. The designer can

manually change these parameters to optimize them or use the scripts described in this note to
automatically search for optimal values.
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Figure 4 Filter Optimization Parameters

Lastly, the encoding of the input and output values depends on the system requirements of the
application (e.g. A/D resolution), and thus are not varied by the optimization script.

3.2 Architectural Parameters
This project uses a shift-add accumulate architecture (fig. 4) for the FIR filter.

memory

A\ 4

barrel shifter

accumulator

register

Figure5 Shift-Add Architecture

The memory is used to store input samples of the filter. The width of the memory is determined by the
input precision, whereas the width of the datapath (i.e. shifter, accumulator and register) is determined
by the coefficient precision and input precision. While the ideal datapath precision is the sum of the
coefficient width and input width, a lower precision may satisfy the specifications and can be obtained
using the scripts described in this note.
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In a shift-and-add architecture, each non-zero digit in a coefficient requires one cycle of processing.
Thus, while the CSD encoding of coefficients introduces quantization error into the filter, it reduces the
number of cycles (cycle count) required to compute each sample. Minimizing the maximum number of
non-zero bhits allows for a convenient tradeoff between the cycle count and the frequency response.

The two architectural parameters, namely datapath width and cycle count, are necessarily a function of
the filter parameters. This function defines the cost of the filter as discussed below.

3.3 Cost Function

The goal of optimization is to minimize a particular design’s “cost”, which is provided by a cost function.
A cost function appropriate for the shift-and-add architecture is

é f.” cyde count U

architectu recost = memory cost + arithmetic cost”
&system frequency ]

where “memory cost” is the cost of memory, “arithmetic cost” is the cost of one shift-add datapath in
Figure . The ceiling operation provides an integer number representing the number of parallel
datapaths required to meet the filter's sample rate requirement, given the underlying technology’s
circuit speed. f; is the desired sample rate, “cycle count” is number of shift-add cycles required, and
“system frequency” is the clock rate of the datapath (i.e., number of cycles executed in one second).
These multiple datapaths share one memory unit, as is reflected in the cost function. The illustration in
Figure shows the dependencies of the cost on the architectural parameters (cycle count and datapath
width), and in turn their dependence on the filter parameters (w, d, nz). The filter parameters are
determined by the specifications. The cost function can be symbolically specified in DSPCanvas or in a
C program (depending on the complexity) as discussed in another section of the tutorial document.

&

datapath
# of cycles @

architecture cost

accumulator
w, d

coefficient
w, d, nz

Figure6 Cost calculation for FIR structure

3.4 Filter Constraints

There are several specifications from traditional FIR filter design that are used as constraints in the
optimization process. Clearly one would like to ensure that the filter specifications are satisfied when
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optimizing the design. Refer to the frequency response curve in Figure , typical for a low-pass filter.
The filter's passband extends from 0 to f; Hz, whereas the stopband begins at f, Hz.

N
& e

Amplitude

Frequency

Figure 7 Filter Constraints

The ripple in the passband is measured to be d, dB, and the filter's attenuation at f, Hz is d, dB. We
use d, and & as constraints in the optimization script. Although simplified for some filter applications,
using these two specifications as design constraints is applicable for most low and high-pass filters.

Furthermore, there is a relationship between the accumulator bit-width and the quality of the filter's
response. As the precision of the accumulator in a shift-and-add architecture is reduced, the response
deviates from a purely floating-point system; this deviation is modeled as noise in the system response.
Thus, when a finite precision accumulator is introduced, we measure the signal-to-noise ratio (SNR) of
the finite precision filter response ysnie relative to a floating-point design Yies:

E(yrzef ) .
E((yref - yfinite)z)
Figure 8 SNR Speciciation

SNR =10log

The next section describes how the frequency specifications and SNR constraints are described in the
optimization scripts in DSPCanvas

4. Optimization Tool in DSP Canvas

The five optimization variables noted in Figure create a five-dimensional space, over which one is to
find a minimum cost solution. In order to reduce the search time, we adopt a two-step optimization
strategy, taking advantage of certain theoretical facts to partition the search. The filter specifications of
passband ripple and stopband attenuation are affected only by how the coefficients are encoded,
whereas the SNR is affected by the accumulator.

The optimization script is shown in Figure , where there are two multivariate optimization loops.



In the first loop of the optimization script, the coefficient parameters are varied, while the accumulator
remains floating point; each time the coefficient's encoding is changed, the filter's passband ripple and
stopband attenuation are checked to ensure they meet specifications. Once minimum cost coefficients
are discovered, the script advances to the second loop where the accumulator precision is varied and
the SNR is measured relative to the original floating point design. The two loops are described below.
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Figure 9 Optimization script

4.1 Fixed Point Coefficient Optimization

The first loop of the script repeatedly simulates the filter for different combinations of coefficient
encoding and checks whether the frequency response satisfies the specifications, while calculating the
cost.

The variables (fig. 10) ri ppl e and atten correspond to the filter specifications of d, and d,
respectively. These variables are used in the optimization block as constraints, as is illustrated in
Figure . The optimization script uses the search space defined by the ranges of the loop variables. In
Figure these are listedas b fir, b _fir_prec,and b_fir _nz; these variables correspond to the

three parameters in coeffici ent<w, d, nz> Note that the cost function is specified as an
externally defined function. In this case it is a C function named ‘cost _fi r”, which takes the filter
parameters from the command-line input, formulates the architectural parameters of datapath_width
and cycle_count, and returns an architectural cost.
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Figure 10 Optimization Dialog Box

The simulation schematic used in the loop for coefficient optimization is shown in Figure 11. As
illustrated, the impulse response of the filter is being measured. The parameters
coef ficient<w, d, nz> are varied and passed to this schematic from the optimization script; note

that the input and accumulator of the filter are specified to be floating point. Once simulated, the
frequency and phase response are stored in data files. The optimization script uses the “set " block to

calculate the resulting passband ripple and stopband attenuation to check if the constraints are
satisfied. To do this, the “set” block in the script reads the frequency response data files (using the
"get_col_op” function) and performs the following computations using “jet_set_eval’ commands:

wl=fl oor (fft_I ength*fl)

w2=cei |l (fft_l engt h*f2+1)

max_ri ppl e=max(filter response in passband)

m n_ri ppl e=m n(filter response in passband)

ripple=nmax_ripple-mn_ripple

at t en_sb=(filter response at w2)

atten=atten_sb-min_ripple
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Figure 11 Optimization Schematic

4.2 Fixed Point Accumulator Optimization
Once the first loop has finished, the best combination of coef fi ci ent <w, d, nz> is fixed and the
script moves on to the second loop (the bottom half of the script in Figure ).

Figure 12 SNR Optimization Dalog Box
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The optimization settings for this loop are illustrated in Figure . Note that the accumulator encoding
settings are now the loop variables, and the SNR is the constraint. To calculate the SNR, the second
loop simulates the schematic in Figure .

The strategy of this schematic is to investigate finite precision effects by comparing the performance of
a filter with a fixed-point datapath versus a filter with a floating point datapath. As illustrated, there are
two filters being used. The bottom filter is a complete fixed-point FIR filter, where the
coef fici ent <w, d, nz>encoding is the determined in the first loop, and the accumulator encoding is
varied by the second loop. Furthermore, the input and output precisions of the filter are specified. The
FIR filter in the upper portion of the figure differs only in that the accumulator is floating point; this is
termed the “reference” filter. A single sinusoid centered in the filter's passband is used as input
stimulus to the two filters, and the resulting SNR is measured and passed back to the optimization
script.  This value is used as the SNR constraint in Figure . As in the first loop, the external cost
function is called to provide the architectural cost of the system.
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Figure 13 SNR Optimization schematic

Once the second loop has finished, optimal values of all parameters are determined and the
optimization script terminates.

5. Factored FIR filter design

A factored FIR approximation of IIR is an alternative implementation of an IIR filter. A factored
FIR approximation for the IIR filter described above is generated using the Colorado design
software. This single stage filter contains 40 factors (maximum delay 2048). IIR filters are
inherently unstable in fixed precision mode. This is a method to stabilize the IIR filter with very
little extra cost, at the same time, preserving the sharp cutoff features of the IIR filter.

The factored FIR filter has a transfer function as follows:

H@=P(2)0 (a +hz" +¢z?)

Figure 15 shows the structure for the factored FIR filter.
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Figure 14 Factored FIR Cost Calculation

P(z) has the same parameters as a conventional Fir filter. However, the cascaded factors present
additional parameters for optimization. The factored FIR filter has a very high cost of memory. Even
though the arithmetic units are reduced the memory cost shoots up. Each of the factors are essentially
a 3-tap FIR filter, but the delays between the taps are variable. Pi and Qi are generally much greater
than 1. This essentially increases the cost of memory, especially when using FPGA architectures that
do not have dedicated memory elements like Xilinx 4000. However, architectures such as the Xilinx
Virtex devices may be much more efficient, since they have embedded memory elements. Figure 14
shows the cost calculation for the factored FIR structure.

factor i factor i+1

() I 4 N [ 4 \

Figure 15 Factored FIR structure
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5.1 Sub-sampled factored FIR

The factored FIR filter has a very high cost of memory. To reduce the cost of memory the sub-sampled
factored FIR filter(fig. 16) was developed on this project. This preserves all the good features of the
factored FIR filter, at the same time reducing the cost of memory.

ﬁ Single Stage Filter I

S N

ﬁ

An additional degree of freedom in optimization is the number of factors used. As an example, if a
single stage requires 40 factors with maximum storage of 512, then a sub-sampling multistage might
require, in the worst-case, 24 factors with maximum storage of 128. Factors with large storage have
small coefficients and the optimization tool exploits this by dropping factors in order of increasing value
of coefficients.

5.2 COST COMPARISION PLOTS

As shown in figures 17-22, the sub-sampled factored FIR filter design, developed on this
project, offersasignificant cost reduction (fig.19), while providing superior performance
(figures 21-22).

Figure 16 Sub-sampled Factored FIR Strcuture

Precision

FIR

IR

O Factored FIR

O Subsampled Factored FIR

Coeff word Accword

Figure 17 Sub-sampled Factored FIR requires lowest coefficient precision
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Figure 18 Subsampled Filter has superior SNR performance
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Figure 19 Subsampled Factored FIR offerslowest cost
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Figure 21 Frequency response comparison
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Figure 22: Optimized fixed-point design versus Matlab floating point design
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6. Computational Architecture Design for FPGA

This filter architecture (figures 23 and 24) is composed of storage elements implemented with dual port
rams, the product of the coefficients, implemented by barrel shifters and an accumulator, which
implements the addition. The filter receives samples at a rate of fs which is a multiple of the system
clock. Given the amount of computations that need to be performed, certain degree of parallelism is
necessary in order to achieve the desired sample rate.

\ 4

y(n)

Figure 23 FIR Structure

memory

barrel shifter

/"

accumulator

register

v
Figure 24 RAM storage ar chitecture

The RAM(figure 25) is used for the storage of the input data samples. The RAM used & dual port
synchronous. The RAM is 16 words deep, and the width is the same as the input sample word. The
ports for the RAM are write enable (WE), write address (A_W), read address (A_R), clock (CLK), input
data (D_IN), and output data (D_OUT).
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Figure 25 RAM Architecture

A multiplication can be implemented on binary numbers by shifting the binary number, multiplicand, by
the amount of the multiplier. This is implemented by the barrel shifter, which takes a control binary
number that indicates the amount of the shift. The inputs of the barrel shifter are the binary samples
input to the filter. The implementation of the barrel shifter is performed with rows of multiplexors (figure
26). The multiplexors are 4 to 1 and each row performs a 0 to 3 shift.

se [1I1L A Y
\ A
_/
I I I I
s I L L
\ A
I

I I I
Figure 26 Barrel Shifter

Shifter based Transpose form:

The transpose form of the FIR filter based on shifts and add/sub also uses the CSD notation to
minimize the number of add/subs. For smaller filters (fewer taps) and for system_clock/sample_clock
ratios that are small, this architecture could perform better.

7. Storage Architecture Design

1. Arithmetic Units with RAM for storage of input words.

The RAM used in this architecture is a dual port RAM as shown below:



bit

-~ — -
N-1 N-2 N-3 0
1
2
&amplqs ......
\ 16

Memory and control logic cost calculation :
System clock to sample clock rate Fsys/Fs <= 16

Number of arithmetic units depends on the number of non-zero operations and on Fsys/Fs : nzops *
Fs/Fsys

For each RAM the cost of control logic is:
4 bit counter for addressread : 2 CLB's @ Fsys

4 bit counter for address write : 2 CLB's @ Fs

initial counter value : 2+ 2CLB's @ Fsys
final counter value : 2+ 2CLB's @ Fsys
total for each AU: 12 CLB's

2. Use of registers for storage of input words.

In this architecture (shown below) we store the input words on shift registers. Each arithmetic unit
accesses the relevant input sample using multiplexors.
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bit {

Cost of Memory
Each input is stored in one register bank. Each input needs to store N bits, corresponding to the width
of the input word. Two bits can be stored in one CLB.

Cost for one tap (CLBs): cell [(input word width) / 2]

Total cost of memory: (number of taps) * {ceil [(input word width) / 2]}

Cost of control logic:
The control logic needs to select the appropriate sample for each of the arithmetic units. The
architecture of this control logic is implemented with a series of multiplexors (figure 27).

- Number of Mux’s per AU depends on number of samples accessed.
Each CLB can hold up to one 4:1 Mux.
Average number of samples accessed/AU = (# taps* Fsys)/(Fs* nzops)
B=ceil[ (tap* Fsys)/(4* nzops* Fs)]

Taps/AU Mux’' AU
1 Wired, O
<=4 B
<=16 B+1
<=28 B+2
<=40 B+3
Tablel

- Control
Counter: Need only one counter for all AUs
ceil [log(Fsys/Fs)/2]
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Controls for multiplexors:
Each 4:1 Mux needs 2 control signals: 1CLB
For each AU need:  cell [Fsys/(16*F9)]

Total cost of control: ceil [Fsys/(16*Fs)] * (number of Mux’s)
Total Cost:

Total cost = [|V|E|IIOT COSt] + [(|V|UX/ AU) AU )] + [COUI iter ] + ~—tr | —X AU /,
— y_
8 Mux AU H

é adou
adap xinword ¢ L& &tap Fsys o Gl‘u aFsxnzops O _é aeFsys 60
Total cost=ce|lg— ——— +celc——,
- & ‘:sc g4nzops XFsg G270 Fsys gxgl &16 xFsgh
g Vi
Fsys/Fs)o
+ce||$é°9 ,(Fsys/Fs)o
2
a0
91‘
where, g - represents the number of multiplexors for the corresponding number of
G

samples/AU as shown in Table 1.

Figure 27 Multiplexor architectureto sdect coefficients

7.1 Architecture Comparison Plots

To select the optimia storage architecture the cost of each srcuture was plotted as shown

below (figures 28-38) for various fixed precision parameter values. Each figure has four
plots:

Upper Left Plot (UL):
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Shows the cost of memory and associated logic for RAM based architecture and
Register based architecture. The red line is for the RAM and blue is for the register-based
architecture.

Upper Right Plot (UR):
Shows the total cost of memory, control logic and arithmetic unit (accumulator),
for the RAM and register architectures.

Bottom L eft Plot (BL):
Shows the cost of registers and access logic. For this plot blue for 1 non zero ops/tap,
green for 2 non zero ops/tap, red 3 non-zero ops/tap, and light blue 4 non zero ops/tap.

Bottom Right Plot (BR):
Shows the total cost for al 3 architectures. The RAM based in red, the register
based in blue and the transpose form in light blue asterisk lines.

Notes:
The plots for the RAM configuration show an increase in discrete steps. These steps
correspond to the frequency ratio fr = fsystem/fsample- 1N 1 Sample clock cycle, we can
operate on fr non-zero bits of the coefficients. If the ratio increases, we will need
fewer RAMS. If the ratio decreases we will need more RAMS. On each RAM we can
buffer 16 input samples. As the ratio increases the discretization increases linearly.

For the plot displaying the register configuration we notice that with an increase of
the number of non-zero operations the curves do not increase linearly. Thisis dueto
the discretization performed by ceil(A) operation, which rounds up the value A to the
next integer. From the cost function for registers we have the term

getapFsys O g sxnzops 0 which accounts for this trend. For afixed tap value,

cell

g4nzops XFSB Fsys g
afixed frequency ratio, and we vary the number of non-zero operations we obtain the
following results.

Cost Fsys/fs=5 / Fsys/fs=10 6

CLB 6 5/
4 W
N /3/ N

Non-zero
ops
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The CLB cost of the AU is greater than the cost of memory. The effect is seen when
we compare plot2 and plot3. The cost in plot2 is not linear as explained on the
previous note. The cost in plot3 corresponding to the register configuration increases
linearly given that the cost of the AU increases linearly with the number of non-zero
operationsg/tap, and this increase is much greater that the cost of memory.

Figures 28-38 show the same plots for different values of F/Fclk, input word width,
accumulator width(bit precision):

Figure Fr = FgFck | Input Width | Accum Width
28 15 16 24
29 10 16 24
30 2 16 24
31 15 16 32
32 10 16 32
33 15 8 16
34 10 8 16
35 15 8 12
36 10 8 12
37 15 16 40
38 10 16 40
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Figure 29 Storage Cost Comparison
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8. Performance Optimization for FPGA Architecture

The RAM based architecture puts some stringent constraints on the clocking schemes.
The input samples are arriving on the sample clock edges. The arithmetic operations are
happening on the system clock edges. The ratio FS/Fclk (system clock speed/sample
clock speed), specifies the number of arithmetic (shift-add-accumulate) operations that
are possible before the next sample arrives. The input samples are stored away in the
RAMs. Depending on the Fs/Fclk ratio and the number of non-zero bitsin the CSD
representation of the coefficients, there could be many parallel RAM/Arithmetic Units.
These are daisy chained. So, as the first RAM reads data, that particular input sampleis
written to the next RAM (RAM 2).

L R T e R s R

— - T

Parallel Arithmetic Units

Figure 39 RAM based ar chitecture

However, depending on the number of non zero bits per coefficient and the way they are
organized, it could very well turn out that the Arithmetic Unit (AU) is looking for a
particular sample in a particular RAM, before it has arrived at that RAM. For example,
consider the case where the F§/Fclk = 4 and the first coefficient has 6 non-zero hits. In
this case, the input data needs to be written to two RAMs simultaneously. The RAMs
cannot be daisy chained as above, but need to be connected as below. This tends to break
the “clean” daisy chain that would otherwise be possible, and also creates an architecture
that has very different implications in terms of timing due to the capacitive loading and

input | | | |

| | | |
I I
Parallel Arithmetic Units

Figure 40 L oad balancing of arithmetic units
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routing due to more fanouts. This can become a serious problem if the same input fars
out to 3 or more RAMs. DSP Canvas, can automatically figure out when this kind of
connection is necessary. (Style 0 and Style 1 in the filter parameters menu control this).
However, by dightly manipulating the coefficients (manually), the first architecture can
be made to work. For instance, at a quantization of 8 bits, 0.002104759 has 10001001,
but by dlightly changing this to 0.002120971, this has 10001011, and by changing this to
0.002075195, this has 10001000. This can significantly change the allocation of
coefficients to arithmetic units and could result in moving from style 1 to style O (the
clean daisy chain). In such a case, the COEFFICIENTS.d file can be manually changed to
reflect the new coefficient and VHDL generator rerun. This can significantly improve
timing and routing on the FPGA..

File Edit Tools Window Help
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Figure 41 Filter modificationsto reduce logic complexity
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When the number of coefficients is small or when the F/Fclk ratio is small, then the
regular transpose form FIR can perform very well. This architecture does not involve
multiple clocks and the overhead of the RAM is not there. However, if the Fs/Fclk ratio is
very high (> 10) and if the filter is alarge filter (> 50 taps), the RAM based architecture
can provide significant area savings. The CSD notation acts to minimize the number of
nor-zero operations, so fewer parallel RAMS are needed.

In some cases, this could be a problem. For example, if the nz_ops (non zero bits), it not a
multiple of the number of RAMS, then the last AU is rot fully utilized (figure 42). There
are clock cycles of the system clock that need to be ignored by the accumulator. When
the Fs/Fclk ratio is high, this can lead to significantly more hardware, in the form of
comparators and multiplexors. An aternative to avoid this is to make sure the nz_ops are
amultiple of F/Fclk ratio, which will reduce unnecessary logic.

Fs/Fclk = 4, Total
From Nz_ops=74.
previous Nz_opsfor thisAU
Stage stage = 2. 2 clock
cycles of the Fs need
to be ignored.

00
'Barrel shifter
If (3" or 4" clock cycle of
the system clock), add 000 ~§\_._
f i <::J_] accumul ator

Additional logic to
ignore 34 and 4" clock

cycles. Comparators,
mux, etc are needed.

Figure 42 Thelast stage of the parallel AU
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